| Pre-Calculus – Mr. Bo      |
|----------------------------|
| Final Review - Worksheet 5 |

| Name:_ |  |  |  |
|--------|--|--|--|
| Date:  |  |  |  |

# Matrices & Systems of Equations (8) Conic Sections (10)

## **Selected Examples:**

1. Find the vertex and focus for the parabola:

$$x^2 - 10x + 12y + 37 = 0$$

2. Find the vertices and foci for the ellipse:

$$\frac{(x-1)^2}{16} + \frac{(y+2)^2}{7} = 1$$

### **Practice:**

| Tractice.                                                                                                       |                                                                                           |                                                                                                |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Determinants (8)                                                                                                | 1. Find the Determinant: $\begin{bmatrix} 3 & -8 \\ 12 & -4 \end{bmatrix}$                | 2. Find the determinant: $\begin{bmatrix} 1 & 4 & -2 \\ 3 & -1 & 1 \\ 5 & 2 & 7 \end{bmatrix}$ |  |  |
| Area using Determinants (8)                                                                                     | 3. Use determinants to find the area of triangle with vertices (0,3), (4, -1) and (-3,2). |                                                                                                |  |  |
| Solving Systems (8) - Gaussian Elimination - Gauss-Jordan Elimination - Using an Inverse Matrix - Cramer's Rule | 4. Solve the system of equations:<br>2x +3y -4z = 4 $x -y -5z = 0$ $-2x +4y +5z = 9$      |                                                                                                |  |  |

| Circle (10)    | 5. Find the center and radius: $x^2 + y^2 + 6x - 2y + 1 = 0$ .                                        |  |  |
|----------------|-------------------------------------------------------------------------------------------------------|--|--|
| Parabola (10)  | 6. Find the vertex, focus, and directrix: $y^2 - 6y - 12x - 15 = 0$ .                                 |  |  |
| Ellipse (10)   | 7. Find the center, vertices, foci, and eccentricity: $\frac{(x+1)^2}{64} + \frac{(y-4)^2}{36} = 1$ . |  |  |
| Hyperbola (10) | 8. Find the center, vertices, foci, and asymptotes: $\frac{(y+2)^2}{4} + \frac{(x)^2}{12} = 1$ .      |  |  |

| Mixed Review | 9. Vector <b>v</b> has initial point (-4, 5) and final point (9, 1). Write vector <b>v</b> in component form and in linear combination form. |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|              | 10. Convert to polar form: $(4, -4\sqrt{3})$                                                                                                 |  |  |  |
|              | 11. Find the area of a triangle with side lengths {8, 4, 10}.                                                                                |  |  |  |
|              | 12. Use DeMoivre's Theorem to evaluate $(-2 + 2\sqrt{3}i)^3$ in standard form.                                                               |  |  |  |
|              | 13. Solve for x: $ln(x) + ln(2x + 8) = ln(90)$                                                                                               |  |  |  |
|              | 14. State the domain: $y = \frac{3x}{\sqrt{3x+9}}$                                                                                           |  |  |  |

### **Mixed Review**

- 1. State the vertical and horizontal asymptotes of  $f(x) = \frac{3x^2 2x + 4}{x^2 8x + 15}$ .
- 2. Divide synthetically:  $(x^4 + 2x^2 x + 1) \div (x + 2)$
- 3. Factor:  $x^4 + 2x^3 + x^2 + 2x$
- 4. Solve:  $e^{4x+1} = 9$
- 5. Convert to polar form:  $(6, -6\sqrt{3})$
- 6. Find the foci and eccentricity for the ellipse:  $\frac{x^2}{28} + \frac{y^2}{64} = 1$ .
- 7.  $\sin u = \frac{5}{14}$ ,  $\tan u < 0$  find  $\sin 2u$ . (in simplest radical form)
- 8. Use DeMoivre's Theorem to evaluate:  $(3-3i)^3$
- 9. Find the determinant:  $\begin{vmatrix} 1 & 9 & -1 \\ -6 & 3 & 8 \\ 0 & 4 & 5 \end{vmatrix}$
- 10. Evaluate: a)  $\sum_{1}^{50} 48i 3$
- b)  $\sum_{1}^{\infty} \left(\frac{3}{4}\right)^{i-1}$
- 11. Find the area of a triangle with:
  - a. Sides lengths {20, 25, 30}
- b. Vertices: (5,6), (3, -4), (9, 1)
- 12. Vector v has initial point (5, 7) and final point (-4, 9). Write v in:
  - a. Component form
  - b. Linear Combination Form
  - c. Trigonometric Form

#### **Mixed Review**

- 1. State the amplitude, period and shifts of the graph of  $y = 2\cos(6x \pi) + 4$
- 2. Solve on  $(0, 2\pi]$ :  $6\cos^2 x 5\sin x 2 = 0$
- 3. Evaluate:  $cos(135^{\circ} + 60^{\circ})$ . (in simplest radical form)
- 4. Solve:  $\log(7-x) \log(3x+2) = 1$
- 5. Find a formula,  $a_n$ , for an arithmetic sequence with  $a_4 = 3$  and  $a_{15} = 47$ .
- 6. Lucy invests \$900 at a rate of 1.5% compounded continuously. What is her balance after 15 years?
- 7. Find the composition f(g(x)):  $f(x) = 3x^2 7$  $g(x) = \sqrt{2x+1}$
- 8. State the Domain:  $y = x^2 7x$
- 9.  $f(x) = 4x^3 8x^2 25x + 50$  State the number of possible *positive real zeros* of f(x) and list all possible *rational zeros*.
- 10. Factor:  $8x^3 + 1$
- 11. Solve:  $2x^2 5x = x^2 + 1$
- 12. Find the inverse:  $f(x) = 3x^2 7$

$$2x - y + z = -3$$

13. Solve the system: x + y + z = 4

$$3x - 2y + 5z = 1$$

- 14. Write the equation of g(x), which is  $f(x)=x^2$  shifted 3 units up and 5 units left.
- 15. Find the modulus and argument for the complex number z = -5 + 5i.